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The present study is a preliminary attempt to use graph theory for deriving distinct features of resting-

state functional networks in young adults with autism spectrum disorder (ASD). Networks modeled

neuromagnetic signal interactions between sensors using three alternative interdependence measures:

(a) a non-linear measure of generalized synchronization (robust interdependence measure [RIM]),

(b) mutual information (MI), and (c) partial directed coherence (PDC). To summarize the information

contained in each network model we employed well-established global graph measures (average

strength, assortativity, clustering, and efficiency) as well as graph measures (average strength of edges)

tailored to specific hypotheses concerning the spatial distribution of abnormalities in connectivity

among individuals with ASD. Graph measures then served as features in leave-one-out classification

analyses contrasting control and ASD participants. We found that combinations of regionally

constrained graph measures, derived from RIM, performed best, discriminating between the two

groups with 93.75% accuracy. Network visualization revealed that ASD participants displayed

significantly reduced interdependence strength, both within bilateral frontal and temporal sensors,

as well as between temporal sensors and the remaining recording sites, in agreement with previous

studies of functional connectivity in this disorder.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Autism spectrum disorders (ASD) are a family of pervasive
developmental disorders believed to reflect abnormalities in brain
development. ASD is characterized by deficits in communica-
tion, social interaction, and a limited range of interests with
repetitive stereotypical behavior [1–4]. The exact cause of autism
is unknown, though many studies have noted differences in struc-
ture and function of the brains of individuals with autism. Several
reports have commented on potential abnormalities in total brain
volume [5,6] and regional changes in gray matter volume and/or
cortical thickness [7–10]. Changes in white matter integrity [11–13]
may also reflect abnormal connectivity between specific brain
regions, resulting in deficient integration of information at the
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neural level [2,14,15]. These findings are consistent with reports of
abnormal cortical connectivity in ASD during execution of tasks
posing high cognitive demands. Most studies report weaker con-
nectivity [16,15,17–19], while others report stronger connectivity
[20,21]. Interestingly, hemodynamic imaging studies have also
highlighted alterations in diffuse patterns of regional connectivity
in ASD during rest [22–24]. Electromagnetic recordings lend further
support to this claim. For example, using dense array EEG, Murias
et al. [25] reported differences between adults with ASD and
healthy, age-matched controls, consisting of increased theta-band
coherence between temporal and frontal regions, and reduced alpha
coherence between anterior and posterior regions, in the former
group of individuals. Moreover, Coben et al. [26] reported reduced
intra-hemispheric delta and theta coherences for both short to
medium and longer inter-electrode distances, as well as reduced
inter-hemispheric delta and theta coherences in the frontal and
temporal regions, relative to controls. Additionally, abnormalities in
baseline activity in ASD were highlighted using magnetoencephalo-
graphy (MEG), though these have consisted of patterns of visually
distinct epileptiform activity [27,28], similar to those seen in
children with Landau–Kleffner syndrome.
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If aberrant network organization is a constitutional characteristic
of ASD, then it may be evident in spatiotemporal profiles of baseline
neurophysiological activity. The present study is a preliminary
attempt to use graph theory for deriving potentially distinct features
of MEG based resting-state functional networks in young adults with
autism. Graph measures have been applied to topological analysis of
brain functional networks, and many of them have been shown to
reflect disease and statistically significant differences between
healthy subjects and subjects with neurological or psychiatric dis-
orders such as ASD [29]. Graph theory offers a unique perspective
and a common framework for studying interactions between neigh-
boring and remote cortical areas, with areas corresponding to the
vertices and interactions to the edges of a graph-based network [30].

Network vertices can easily be identified with fMRI data but the
dependence between vertices can be measured only for low frequen-
cies (o0:5 Hz) due to the limited time resolution of fMRI. On the
other hand the time resolution of EEG/MEG is excellent but the
mapping from generators in the brain to the sensors on the scalp is
complex and the topology of a network in sensor space differs from
the topology in generators space [31]. To identify generators from
EEG/MEG data one has to solve the inverse problem which is ill posed
and sensitive to noise. In this work, where our objective was to
distinguish ASD from typically developing participants using MEG,
we explored information present in sensor-level functional networks
avoiding the ambiguities which are introduced by the solution of the
inverse problem. In sensor-level functional networks vertices corre-
spond to sensors. We estimated the interactions between vertices
from neuromagnetic recordings of resting-state brain activity by
applying two alternative bivariate and one multivariate interdepen-
dence measures: (a) a non-linear measure of generalized synchroni-
zation (robust interdependence measure (RIM)), (b) mutual infor-
mation (MI), and (c) partial directed coherence (PDC). MI is based on
solid information-theory concepts. RIM is a heuristic, which is based
on the theory of recurrence within dynamic systems. Traditional
coherence estimates were also computed for comparison [32]. All
these measures are bivariate and suffer from the problem of detect-
ing spurious synchronization between conditionally independent
variables. For example, if X drives Y and Z but there is no direct
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The information contained in a synchronization network can be
further summarized with graph measures. Here we considered well-
established graph measures originally derived from statistical phy-
sics, such as the average strength, the clustering coefficient, the
assortativity coefficient and the global efficiency index, as well as
graph measures tailored to specific hypotheses concerning the
spatial distribution of abnormalities in connectivity among indivi-
duals with ASD. These custom connectivity indices were derived by
segmenting the sensor array into sectors and estimating connectiv-
ity both within- and between-sectors, presumed to reflect ongoing
neurophysiological activity in frontal, temporal, parietal, ventral
occipitotemporal and occipital brain regions. Then we investigated
the capacity of these graph measures to distinguish individuals from
the two groups. Our main finding was that graph measures that
incorporate previous knowledge on differences in connectivity
among ASD and control subjects outperform commonly used, but
global, graph measures as classification features. Additionally we
discuss how the classification results are affected by signal spectral
frequency and by the interdependence metric used to obtain the
network models. Finally we illustrate the differences between ASD
and control subjects by visualizing the average spatial network
profile for each group as well as representing the spatial distribution
of edges that are stronger in the absolute majority of ASD partici-
pants compared to the majority of control participants.

2. Methodology

Initially, functional connectivity networks were constructed in
sensor space using synchronization measures. Then potentially
characteristic features of a mental disorder, in the present case
autism, were extracted from these networks using graph measures.
The ability of a feature in differentiating between two or more
groups of subjects was evaluated by performing cross-validation
classification tests and/or ANOVAs. This method is illustrated step-
by-step in Fig. 1. In the following we assume that we have two
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groups of subjects (ASD and controls). Also without loss of generality
we assume that for each subject a continuous multivariate (MEG)
signal of duration 150 s and sampling frequency 1017 Hz is available.

2.1. Synchronization measures

For each subject, synchronization matrices were computed
using both bivariate and multivariate synchronization measures.
The bivariate measures were (a) a non-linear measure of general-
ized synchronization (robust interdependence measure (RIM))
and (b) mutual information (MI), while partial directed coherence
(PDC) served as the multivariate measure. The entire 150 s trace
was used as input for computing MI and PDC. Computation of RIM
was performed on 25 consecutive 6 s segments; a synchroniza-
tion matrix was computed for each 6-s segment and finally the
average (across all the 6-s segments) synchronization matrix was
calculated. The sensitivity of each measure was initially assessed
on the raw broadband (0.1–100 Hz) signal. The measure that
provided the best results in terms of distinguishing ASD from
control participants at the individual level was further evaluated
in the frequency domain, by separately computing indices in the
delta (1–4 Hz), theta (5–7 Hz), alpha (8–13 Hz), beta (14–30 Hz),
and gamma (30–90 Hz) frequency bands. Global as well as band-
specific indices were used to determine the nature of group
differences in sensor-level connectivity patterns. For the band-
specific data we additionally calculated synchronization indices
using coherence [32] for comparison. The computation of RIM, MI
and PDC is described below. Additional computational informa-
tion and detailed comparisons between synchronization mea-
sures can be found in [33,34].

2.1.1. Robust (non-linear) interdependence measure

Arnhold et al. [35] presented a measure for characterizing
statistical relationships between two time series, which was later
improved by Quian Quiroga et al. [36]. Given two scalar time
series fxðtÞgtAT and fyðtÞgtAT with T¼ f1, . . . ,Tg, the dynamics of
the hypothetical underlying systems X and Y, respectively, are
estimated using delay coordinates [37]:

xðtÞ ¼ ½xðtÞ,xðtþtÞ, . . . ,xðtþðd�1ÞtÞ�T

In a similar fashion we reconstructed yðtÞ from fyðtÞgtAT, with an
embedding dimension d and a delay time t for tAT0 ¼ f1, . . . ,T 0g,
where T 0 ¼ T�ðd�1Þt.

Let rt,j and st,j, j¼ 1, . . . ,k, denote the time indices of the k

nearest Euclidean neighbors of xðtÞ and yðtÞ, respectively. Tempo-
rally correlated neighbors were excluded by means of a Theiler
[38] correction: jrt,j�tj4d � t and jst,j�tj4d � t. For each tAT0, the
average square distance of yðtÞ to all remaining points in fyðjÞgjAT0

is given by

RtðYÞ ¼
1

T 0�1

XT 0
j ¼ 1,ja t

jyðtÞ�yðjÞj2

For each yt , the X-conditioned mean squared Euclidean distance is
defined as

RðkÞt ðY=XÞ ¼
1

k

Xk

j ¼ 1

jyðtÞ�yðrt,jÞj
2

Quian Quiroga et al. [36] defined the dependence measure:

NðY=XÞ ¼
1

T 0

XT 0

t ¼ 1

RtðYÞ�RðkÞt ðY=XÞ

RtðYÞ
ð1Þ

The measure N(X/Y) is defined in complete analogy. Although,
in general: NðX=YÞaNðY=XÞ, this measure is not suitable for
inferring driver-response relationships [35]. For this reason, RIM
values between X and Y were calculated as the mean of N(X/Y) and
N(Y/X).

The parameters t and d were selected using empirical and
heuristic criteria [39]. Given a time series {x(t)}, parameter t is the
argument of the first local minimum in the mutual information
between time series {x(t)} and its delayed version fxðtþtÞg [40].
An algorithm to compute the mutual information between two
finite time series is described in Section 2.1.2. Parameter d is
determined using false nearest neighbor statistics [41]. After
calculating the optimal parameters t and d for every subject,
segment and channel we selected t¼ 10 and d¼14 for all
calculations of RIM. Note here that small variations in parameter
t have negligible effects in the reconstruction of the dynamics of a
system. Similarly, the reconstruction is not very sensitive to
parameter d provided that d is above some critical value which
can be determined using the false nearest neighbor statistic.

Parameter k determines the size of the neighborhood of a delay
vector xðtÞ. A value of k between 10 and 30 is a reasonable choice
given that the set of delay vectors, that can be paired with xðtÞ,
contains T 0�2�th¼ T�ðd�1Þ�t�2�th¼ 6102�13�10�2�14�10¼
5692 elements, where th is the number of neighbor delay vectors
of xðtÞ that are excluded since they are temporally correlated with
xðtÞ (Theiler correction [38]). Usually thZd � t. In this work th was
set to d � t and k was set to 15.

2.1.2. Mutual information

While RIM is based on similarities in the time domain, mutual

information (MI) measures the interdependence of two time series
using an algorithm derived from information-theory concepts.
Mutual information has several important advantages. First, it is
sensitive to any type of dependence, including non-linear relations
among the time series, such as the generalized synchronization (see
Section 2.1.1). Second, it is relatively insensitive to outliers in
measurement space and third, it is measured on a physically
meaningful scale (bits when logarithms to the base 2 are used).
The MI of two discrete random variables X and Y is defined as

IðX;YÞ ¼
X
yAY

X
xAX

pðx,yÞlog
pðx,yÞ

pxðxÞ � pyðyÞ

� �
ð2Þ

where p(x,y) is the joint probability distribution function of X and Y,
and pxðxÞ ¼

P
yAY pðx,yÞ and pyðyÞ ¼

P
xAXpðx,yÞ are the marginal

probability distribution functions of X and Y, respectively. In the case
of continuous variables, the summation is replaced by a definite
double integral.

Estimating MI for two finite time series fxðtÞgtAT and fyðtÞgtAT

with T¼ f1, . . . ,Tg is far from trivial since the distributions px(x),
py(y) and p(x, y) are unknown. The most straightforward approach
for estimating MI consists of, first, discretizing the analog signals into
a set of bins; then estimating the density functions px(x), py(y) and
p(x,y) by counting the number of points falling into the various bins.
The plug-in estimate of MI is obtained by plugging the empirically
derived discrete probabilities into (2). The alternative of naively
identifying observed frequencies of events with probabilities leads to
systematic errors and overestimation of MI. There is an extensive
literature dealing with how to correct these errors [42–44]. For this
reason, we have elected to estimate MI using the direct method of
Strong et al. [43] which computes bias terms, as a function of sample
size, directly from the data. In this approach, the bias terms are used
to improve the plug-in estimate of MI. For an implementation of the
direct method see [45]. Alternative MI estimation methods are
reviewed by Hlaváčková–Schindler et al. [46].

2.1.3. Partial directed coherence (PDC)

In order to provide a frequency domain measure for Granger-
causality, Baccalá and Sameshima [47] introduced the concept of
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PDC. This measure was derived from a factorization of the partial
spectral coherence and is based on the Fourier transform of the
coefficient series of a vector autoregressive model of the time
series.

Let fxðtÞgtAT with xðtÞ ¼ ½x1ðtÞ, . . . ,xnðtÞ�
T be a stationary

n-dimensional time series with a mean of zero. Then a vector
autoregressive model of order r for x is given by

xðtÞ ¼
Xr
r ¼ 1

AðrÞxðt�rÞþeðtÞ ð3Þ

where AðrÞ are the n�n coefficient matrices of the model and eðtÞ
is a multivariate Gaussian white noise process with covariance
matrix R. In this model, the coefficients Aij(r) describe how the
present values of xi depend linearly on the past values of the
components xj.

Let

AðoÞ ¼ I�
Xr
r ¼ 1

AðrÞe�ior ð4Þ

denote the difference between the n-dimensional identity matrix
I and the Fourier transform of the coefficient matrices. Then the
PDC from xj to xi is defined as

pi’jðoÞ ¼
jA ijðoÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
l ¼ 1 jA ljðoÞj2

q ð5Þ

The PDC pi’jðoÞ takes values between 0 and 1 and vanishes for all
frequencies o if and only if the coefficients Aij(r) are zero for all
r¼ 1, . . . ,r.

The model order r was chosen according to Akaike informa-
tion criterion and in all cases it was a number between 22 and 28.
Knowing the optimal value of r is not critical, since the results are
not sensitive to small changes of r. For an implementation of PDC
see [48].

2.2. Network modeling and visualization

A recent trend in brain functional connectivity analysis is to
model the interdependencies among brain signals as networks
[49,50,30]. Based on a particular measure of signal interdepen-
dence (such as RIM, MI, and PDC) one may then compute certain
network statistics that characterize the network. On the basis of
these calculated properties one can estimate the effects of sub-
ject-level variables (e.g., group membership) and of within-sub-
ject, task-related variables (such as cognitive load) on functional
connectivity. Graph theory is perhaps the most widely used
approach to network modeling.
2.2.1. Graph theoretical concepts

A graph G¼(V,E) is defined as a set of n vertices V ¼ fv1, . . . ,vng

and m edges E¼ fe1, . . . ,emg. An edge eAE is a pair of vertices,
which can be either ordered e¼ ðu,vÞAV � V (known as a directed

edge), or unordered e¼ fu,vg, where u,vAV (undirected edge).
When u¼v, e the pair is called a self-loop. Here we consider
simple graphs, namely graphs without self-loops and multiple
edges. Note that RIM, MI and the traditional coherence produce
undirected simple graphs, while PDC produces directed simple
graphs. An induced subgraph of G is one that consists of some of
the vertices of G and all the edges that connect them. A valued

graph or valued network G¼ ðV ,E,oÞ is a graph comprising vertex
set V and edge set E augmented with an edge value function o :
E-R that assigns a real value oðeÞ to each edge eAE. In this work
we consider a particular type of valued networks, which we will
call synchronization networks, where edges take values between
0 and 1 and serve as indices of the strength of the dependence
between vertices.

In synchronization networks higher edge values indicate
stronger dependencies. To define the length of an edge we may
reverse the order of edge values by applying, for example, the
function ‘ : ð0,1�-½1,þ1Þ with equation [51]

‘ðxÞ ¼ 1�log2ðxÞ ð6Þ

The length of a path from vertex u to vertex v is the sum of the
lengths of the edges of the path. The shortest path distance from
vertex u to vertex v is denoted by dG(u, v). If vertex v is unreachable
from vertex u then dGðu,vÞ ¼ þ1.

2.2.2. Network construction

Network modeling of the present data started by calculating
interdependencies for each channel pair, separately for each
subject, band (including the broadband signal) and synchroniza-
tion measure. The results were stored to n�n synchronization
matrices (where n is the number of selected channels) with
elements ranging from 0 to 1. A synchronization matrix W¼[wij]
corresponds to a synchronization network G¼ ðV ,E,oÞwith vertex
set V ¼ fv1,v2, . . . ,vng, and edge set E defined by the non-zero
elements of W, i.e., an edge e¼(vi, vj) between vertices vi and vj is
included if and only if wij40; the value of e is set to oðeÞ ¼wij.

2.2.3. Network measures

In order to characterize a network, it is necessary to reduce the
information by describing its essential properties into a limited set
of parameters (often called measures or metrics). Network measures
are easily computable statistics which are chosen in such a way as to
capture the relevant information necessary to differentiate com-
puted networks into discrete classes, according to the goal and
hypotheses of the study. Here we consider well-established network
measures which have been introduced in previous research on
complex and social networks as well as custom network metrics,
by taking into account the general outline of brain regions expected
to display reduced functional connectivity in ASD. Widely used
global network measures implemented here include average
strength, the clustering coefficient [52,53], the assortativity coeffi-
cient [54,55], and the global network efficiency index [56,57].

Average strength: In undirected networks, the strength s(v) of a
vertex vAV is defined as the sum of values of edges adjacent to v:

sðvÞ ¼
X

e ¼ fv,ugAE

oðeÞ ð7Þ

In directed networks one can define the in-strength s�ðvÞ as the
sum of values of edges that arrive to v, the out-strength sþ ðvÞ as
the sum of values of edges that depart from v, and the strength of
vertex v as the sum of the in-strength and out-strength of v:

s�ðvÞ ¼
X

e ¼ ðu,vÞAE

oðeÞ ð8Þ

sþ ðvÞ ¼
X

e ¼ ðv,uÞAE

oðeÞ ð9Þ

sðvÞ ¼ s�ðvÞþsþ ðvÞ ð10Þ

The average strength, s(G), of a graph G is the average of s(v) taken
over all vertices. The average in-strength s�ðGÞ and out-strength
sþ ðGÞ of G are defined similarly.

Clustering coefficient: For a vertex v the clustering coefficient
c(v) assesses the connectivity within its immediate neighborhood.
A definition for undirected networks that use matrix W was
proposed by Zhang and Horvath [53]. It is the quotient of the
total intensity of the triangles that contain vertex v divided by the
total intensity of the dyads of edges incident to vertex v, where
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the intensity of a triangle is the product of the values of its
edges and the intensity of a dyad is the product of the values of
its edges:

cðvÞ ¼
1

maxi,jðwijÞ
�

P
ia jAV\fvgwviwijwjvP

ia jAV\fvgwviwjv
ð11Þ

where maxi,jðwijÞ is a normalizing factor.
In directed networks Fagiolo [58] distinguishes four basic

scenarios for a given vertex v to be located in a triangle. By
summing the intensities of all triangles of all these scenarios as
well as the intensities of all dyads that contain vertex v we arrive
at the following equation:

cðvÞ ¼
1

maxi,jðwijÞ
�

P
ia jAV\fvgðwviþwivÞ � ðwijþwjiÞ � ðwvjþwjvÞ

2
P

ia jAV\fvgðwviþwivÞ � ðwvjþwjvÞ
ð12Þ

In both the directed and undirected cases the clustering
coefficient c(G) of a graph is the average of c(v) taken over all
vertices.

Assortativity: The assortativity coefficient was first defined by
Newman [54] for undirected graphs. Leung and Chau [55]
extended this definition to cover the class of undirected synchro-
nization networks. We will further extend the definition of Leung
and Chau to cover the class of directed networks as well.

Using the direction of edges we correlate a scalar quantity of
the origin vertices with the same scalar quantity of the destina-
tion vertices. This scalar quantity, defined on vertices g : V-R,
can be the strength s(v), the in-strength s�ðvÞ, the out-strength
sþ ðvÞ, or something else. Suppose that E¼ fe1,e2, . . . ,emg are the
edges of a graph G and that we form the vectors x¼ ½gðorigðe1ÞÞ,
. . . ,gðorigðemÞÞ� and y¼ ½gðdestðe1ÞÞ, . . . ,gðdestðemÞÞ�, where origðeiÞ

and destðeiÞ are the origin and destination vertices of edge ei. Then
the assortativity coefficient is the weighted Pearson correlation,
corrðx,yÞ, of vector x and y with weights the edge values. After
some calculations we arrive at the following equation:

rðGÞ ¼
H
P
ðu,vÞAEoðu,vÞgðuÞgðvÞ�ABffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H
P
ðu,vÞAEoðu,vÞgðuÞ2�A2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H
P
ðu,vÞAEoðu,vÞgðvÞ2�B2

q
ð13Þ

where A¼
P
ðu,vÞAEoðu,vÞgðuÞ,B¼

P
ðu,vÞAEoðu,vÞgðvÞ and H¼

P
eAE

oðeÞ is the sum of all values of edges in E.
Fig. 2. (a) Spatial layout of all MEG sensors and of the selected 46 sensors. Nine senso

labeled L1–L8.
Note that in undirected graphs (13) reduces to the equation
proposed by Leung and Chau [55] if we substitute each undirected
edge {u,v} with two directed edges (u,v), (v,u) and if we set g

equal to strength s. Also (13) generalizes the equations proposed
by Piraveenan et al. [59].

The assortativity coefficient measures whether a network is
optimized for easy transfer of information in which case the
network is assortative (r40) or for robustness, in which case the
network is disassortative (ro0). Park et al. [60] report that
typically functional brain networks are assortative.

Efficiency: For a vertex v Latora and Marchiori [56] defined
efficiency as

ef ðvÞ ¼
1

n�1

X
uav

1

dGðv,uÞ
ð14Þ

Note that (14) can also be used for disconnected graphs. If some
vertices v and u are not connected then they do not contribute to
ef(v). In this case, dGðv,uÞ ¼ þ1) 1=dGðv,uÞ ¼ 0. The global effi-
ciency, ef(G), of a graph is the average of ef(v) taken over all
vertices. The definitions of vertex efficiency and of global network
efficiency apply both to directed and undirected networks.

Within- and between-sector strength: The network measures
mentioned above were developed for general complex networks
and may not optimally differentiate ASD and control participants,
as they do not take into account the spatial distribution of sensors
in relation to potentially important underlying activity sources. In
order to provide more suitable indices of connectivity we adopted
a region of interest approach and we introduced two sets of
metrics that accumulate edge values either within or between
specific sectors of the sensor array. Within-sector strength measures
accumulate the edge values of the edges within each predefined
sector of the sensor array (see Fig. 2). Seven within-sector metrics
were defined, SW(i), iAf1, . . . ,7g (see (15); the eighth sector con-
sisted of a single occipital sensor and was thus not included in the
within-sector measure calculations), using the formula:

SW ðiÞ ¼
X
eAEi

oðeÞ ð15Þ

where Ei are the edges of the subgraph Gi of G ‘‘connecting’’ the
vertices of sector Li, iAf1, . . . ,7g.

Conversely, each of the between-sector strength measures
accumulated the values of the edges formed by the sensors of a
L LL

LL

LL

L

rs with excessive noise are not shown. (b) Elliptic shapes indicate sensor sectors



Table 1
Demographic and IQ information on the two groups of participants. FSIQ refers to

an average of subtests of vocabulary and of pattern analysis/nonverbal reasoning.

Scores of the autism screening questionnaire (ASQ)/social communication ques-

tionnaire (SCQ) are also shown. Groups differ at level: �po0:01.

Controls (n ¼ 8) ASD (n¼8)

Gender (boys/girls) 7/1 7/1

Age (years) 20.174.9 (17–21) 18.972.6 (17–20)

FSIQ� 126.678.4 (116–139) 104.6715.8 (85–125)

VIQ 122.778.0 (116–136) 101.6716.8 (73–122)

PIQ 122.675.6 (116–132) 107.0714.2 (83–126)

ASQ (SCQ) – 20.7076.7 (18–28)
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particular sector with the sensors comprising all the remaining
sectors. Between-sector metrics, SB(i), iAf1, . . . ,8g (see (16)), were
computed for each of the eight sectors:

SBðiÞ ¼
X
ja i

X
fu,vgAE, uAVi , vAVj

oðeÞ ð16Þ

where Vi and Vj are the vertices of sectors Li and Lj, respectively,
with iAf1, . . . ,8g, and jAf1, . . . ,8g\fig spans the other sectors Lj.

For example, SB(1) accumulates the edge values between the
sensors of the bilateral frontal sector (L1) and the sensors of all
other sectors: left and right temporal (L2 and L3), left and right
parietal (L4 and L5), left and right ventral occipitotemporal (L6 and
L7) and midline occipital (L8).

2.2.4. Analytic strategy

The potential utility of connectivity estimates as biomarkers of
ASD was examined by performing leave-one-out cross-validation
classification analyses. In this technique a classifier, in this case a
support vector machine with a linear kernel, was trained using
the data from all but one subjects from both groups and its
generalization performance was tested with the remaining
subject. The procedure was repeated such that every subject’s
network parameters served once as the validation data set. At
the end of each set of cross-validation analyses we estimated the
sensitivity, specificity and accuracy of the measure that served as
the classification feature. Sensitivity focuses on the proportion of
true positives (i.e., correctly identified ASD participants), specifi-
city primarily concerns the proportion of true negatives (i.e.,
correctly identified control participants), and accuracy is the
proportion of correctly identified participants. Classification runs
were performed separately for each graph measure (average
strength, clustering coefficient, assortativity coefficient, efficiency,
within- and between-sector strength indices) and for each
measure of interdependence (RIM, MI, PDC and coherence). Thus
the total number of cross-validation sets for individual features is
(1 [for the broadband signal] þ the number of frequency bands
in which the signal is filtered) � (number of interdependence
measures) � (number of graph measures) ¼ (1 þ 5)�4� (4 þ
15) ¼ 456 sets of tests. Additionally, cross-validation tests were
performed with composite features (i.e., features that consist of two
or more graph measures). Namely, for each measure of connectivity
(RIM, MI, PDC and coherence) and frequency band we chose the five
best graph measures and we formed all possible combinations of
two and three graph measures. Therefore the total number of cross-
validation sets of tests that were performed with composite features
were 4� 6� 5

2 þ
5
3

� �
¼ 480.

In addition, the direction of group differences on each of the
four global graph measures (clustering, assortativity, efficiency,
and strength) was assessed through multivariate one-way ANO-
VAs with Group as the between subjects variable. Supplementary,
parametric analyses assessed the spatial distribution and spectral
specificity of group differences on the custom graph indices.
A separate ANOVA was carried out on the indices derived from
each interdependence measure (RIM, MI, and PDC), with sector as
the within subjects variable (with eight levels for the between-
sector data and seven levels for the within-sector data) and group
(2) as the between subjects variable. Significant two-way inter-
actions were further explored by assessing group simple main
effects at each sector.

2.2.5. Network visualization

Network visualization is useful in order to describe the hidden
structure of a network graphically and renders potential group
differences more apparent. Visualizing all edges of a ‘‘dense’’
valued network might lead to an unintelligible image. For this
reason sensor-level networks were visualized by first converting
the set of continuous graph parameters for each participant into a
‘‘binary’’ graph which contained only a selected subset of the
edges of the original network;namely only the strongest edges.
The new graph included edges e¼(vi,vj) if and only if oðeÞ ¼
wijZy, where y is a user-selected threshold. For PDC data, the
threshold was set so that yZmaxvi ,vj AV w0ij, where w0ij is the signi-
ficance level of the hypothesis that the PDC from vj to vi is zero
(H0: pi’jðoÞ ¼ 0) [61,62]. For RIM and MI data, the threshold was
set so that yZmaxvi ,vj AV ð/w0ijSþ1:645�sw0

ij
), where /w0ijS is the

average value and sw0
ij

is the standard deviation across 30
repetitions of calculations of surrogate synchronization between
vi and vj. To calculate surrogate synchronization between time
series fxiðtÞg and fxjðtÞg we randomly shuffled (i.e., re-ordered)
fxjðtÞg, in order to minimize dependencies between fxiðtÞg and
fxjðtÞg, and then we calculated RIM and MI on the rearranged time
series [63]. The vertices of this binary graph were assigned the
coordinates of the corresponding channels.

In addition to outlining the group-average layout of the
sensor-level, resting-state network for each group, it is informa-
tive to visualize the differences between the networks for the two
groups of participants. It is of particular interest to identify edges
that were stronger (or weaker) for controls than ASD participants
(see Fig. 4). We identified these edges as follows. Let W(q) be the
synchronization matrix of subject q and wijðqÞ be its (i,j) element.
We remind the reader here that when wijðqÞ40 then wijðqÞ is the
value of edge (vi,vj) from vertex vi to vertex vj. For each i,jA
f1, . . . ,ng, ia j we sorted in descending order the elements wij(q),
for all subjects. If the majority of the first half of the sorted
elements corresponded to control subjects we identified edge
(vi,vj) as being stronger in the control than in the ASD group.
Conversely if the majority of the sorted elements characterized
ASD subjects we identified edge (vi,vj) as being stronger in the
ASD than in the control group. Edges (vi,vj) that did not meet
these criteria were not displayed. While it may be striking that
isolated edges perfectly discriminated participants in the two
groups, they were not considered further given that single edges
are not likely to constitute robust features for subject classification.
3. Application

3.1. Participants

Recruitment criteria for individuals with autism and matched
controls have been described previously [64]. The primary target
group consisted of eight young adults who had been diagnosed
with high-functioning autism using the autism diagnostic obser-
vation schedule [65] and the autism diagnostic interview, revised
[66]. The control group consisted of eight young adults with
unremarkable neurological and psychiatric history. For both
control and high-functioning autism participants, a full-scale IQ
(FSIQ) index was derived from the verbal (VIQ) and performance
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(PIQ) IQ scales of the Wechsler abbreviated scales of intelligence
[67]. In the present sample, participants with high-functioning
autism had lower estimated full-scale IQ scores than typically
developing individuals (see Table 1). On average controls were
slightly older than ASD participants although the age range in the
two groups was identical. Written informed consent was obtained
from all subjects according to institutional review boards for the
protection of human research participants at the University of
Houston and University of Texas Health Science Center-Houston.
3.2. MEG data acquisition

Magnetic recordings were performed with a whole-head
neuromagnetometer (4D Neuroimaging; San Diego, CA) equipped
with 248 axial gradiometer sensors and housed in a magnetically
shielded room designed to reduce environmental magnetic noise.
The recording sessions required the participants to lie as still as
possible with their eyes closed; on a bed with their head inside
the helmet-like device. The entire experimental session lasted
approximately 30 min per participant, and included 20 min for
head digitization and subject acclimation. Ongoing activity was
acquired in a single time series record for 3 min. The recorded
signals were filtered online with a band pass between 0.1 and
100 Hz and digitized at a rate of 1017 Hz. For the task of noise
reduction the 3 min time series was split into 90 2-s segments
and each was inspected for muscle and sensor jump artifacts.
Segments with excessive artifacts were rejected and the remain-
ing segments were concatenated to form a single segment. For
uniformity, 150 s of recording (150�1017¼152,550 samples)
was retained for each subject. Nine MEG channels presenting
extreme variance values were identified and excluded from
further processing. Finally, a set of 46 channels which were deemed
representative of eight major helmet sectors (roughly corresponding
to bilateral frontal, occipital, left and right temporal, parietal, and
Fig. 3. (a–c) Average resting-state functional network across typically developing partic

¼ 8). The networks were calculated using (a and d) RIM, (b and e) MI, (c and f) PDC.
ventral occipitotemporal placements) were selected to form a
synchronization network (see Fig. 2). The small number of selected
channels dramatically reduced processing time and computer
memory requirements of the interdependence measures without
significantly affecting the differentiation between the networks of
ASD and control subjects (compare Tables 2 and 6).
3.3. Results

As shown in Fig. 3 the networks derived from RIM and MI
appeared very similar to each other and both had ‘‘long’’ edges
spanning distant sensor array sectors. Conversely, the networks
resulting from PDC were composed mainly of ‘‘short’’ edges. Fig. 3 is
particularly revealing of the scarcity of ‘‘long’’ range connections
among ASD participants, in accordance with the disconnection
hypothesis of autism [15] and with the work of Monk et al. [23].

The results of the leave-one-out classification analyses are
presented in Tables 2, 4 and 5 for each graph measure. Sensitivity
and specificity estimates permit comparisons of the relative
classification efficiency across the three measures of signal inter-
dependence from which graph network measures were derived.
Thus, it becomes apparent that hypothetical networks calculated
from RIM measures of interdependence contain more information
relevant to group differences than networks computed with MI.
Additionally, PDC is inferior to both RIM and MI in differentiating
ASD from typically developing participants. Fig. 4 helps to identify
the edges that differentiate ASD from control participants based
on RIM-derived graph measures. Attenuated short-range ‘‘con-
nections’’ in ASD participants were found within bilateral ‘‘tem-
poral’’ and ‘‘frontal’’ sectors as well as within the left parietal
sector. Moreover, practically all ‘‘connections’’ formed by the sets
of ‘‘temporal’’ and ‘‘frontal’’ sensors with other sensors were
attenuated among ASD participants. Statistical evaluations of
these apparent group differences are reported below.
ipants (n ¼ 8). (d–f) Average resting-state functional network for the ASD group (n
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Fig. 4. Hypothetical network differences between control and ASD participants. Networks were estimated by RIM. (a) Solid lines represent edges which were stronger for

the majority of controls compared to the majority of ASD participants. (b) Solid lines represent edges which were stronger for the majority of ASD participants as compared

to the majority of controls. (c) Schematic rendering of ‘‘connections’’ between-sectors. The dashed lines depict stronger connections for controls, while the solid lines

depict stronger connections for ASD participants. Sectors with stronger intrinsic connections for controls are labeled by C, while sectors with stronger intrinsic connections

for ASD participants are labeled by A.

Table 2
Classification results using graph measures as features. The networks were

calculated using RIM in the broadband MEG signal. SB(1), SB(2) and SB(3) are the

between-sector strength metrics for bilateral frontal, left and right temporal

sectors, respectively. SW(3) indicates average within-sector strength for the right

temporal sector.

Feature(s) True

positives

True

negatives

Sensitivity

(%)

Specificity

(%)

Average strength 7 6 87.5 75

Clustering

coefficient

6 4 75 50

Assortativity

coefficient

5 4 62.5 50

Efficiency 7 6 87.5 75

SW(3) 7 7 87.5 87.5

SB(1) 7 6 87.5 75

SB(2) 7 7 87.5 87.5

SB(3) 7 7 87.5 87.5

fSW ð3Þ,SBð2Þ,SBð3Þg 8 7 100 87.5

Table 3
Classification results using graph measures as features. Networks were calculated

using RIM in the alpha band.

Feature(s) True

positives

True

negatives

Sensitivity

(%)

Specificity

(%)

Average strength 7 5 87.5 62.5

Clustering

coefficient

6 5 75 62.5

Assortativity

coefficient

6 6 75 75

Efficiency 7 5 87.5 62.5

SW(3) 6 6 75 75

SB(1) 6 5 75 62.5

SB(2) 6 6 75 75

SB(3) 5 6 62.5 75

fSW ð3Þ,SBð2Þ,SBð3Þg 6 6 75 75

Table 4
Classification results using network measures as features. Networks were calcu-

lated using MI in the broadband MEG signal.

Feature(s) True

positives

True

negatives

Sensitivity

(%)

Specificity

(%)

Average strength 6 6 75 75

Clustering

coefficient

6 5 75 62.5

Assortativity

coefficient

4 3 50 37.5

Efficiency 5 4 62.5 50

SW(3) 6 5 75 62.5

SB(1) 7 6 87.5 75

SB(2) 7 5 87.5 62.5

SB(3) 7 6 87.5 75

fSW ð3Þ,SBð2Þ,SBð3Þg 7 6 87.5 75
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Inspection of Table 2 further suggests that the assortativity
coefficient may not be an appropriate feature for individual
subject classification. Note here that all functional networks that
we computed are assortative as expected. Neither clustering
coefficient, which measures the local connectivity of a network,
can be considered as a strong biomarker of autism. Classification
results may be considered satisfactory using the global efficiency
index, which takes into account the global structure of the
network and if used as a single feature led to 13/16¼81.25%
accuracy. Similar results were achieved by using average strength.
However, the highest accuracy, 14/16¼87.5%, was achieved by
one within- and two between-sector graph metrics. These metrics
reflected the average strength of the edges formed within the
right ‘‘temporal’’ sector SW(3), and also the average strength of the
edges formed by each of the left SB(2) and right ‘‘temporal’’
sectors SB(3) with all the remaining sensors. Note also that the
combination of the three parameters SW(3), SB(2), SB(3) led to
15/16¼93.75% classification accuracy.

By comparing Tables 2 and 3 it is apparent that classification
accuracy was higher in the broadband signal than in the alpha
band. Classification accuracy was also higher in the alpha band
than in the delta, theta, beta and gamma bands. These results hold
for all synchronization measures employed (RIM, MI, PDC and
coherence).
3.3.1. Group differences in connectivity

This section describes the results of parametric analyses per-
formed on the global graph parameters (strength, assortativity,
clustering, and efficiency), as well as on the spatially constrained
graph indices (within- and between-sector average strength)



Table 5
Classification results using network measures as features. Networks were calcu-

lated using PDC in the broadband MEG signal.

Feature(s) True

positives

True

negatives

Sensitivity

(%)

Specificity

(%)

Average strength 3 3 37.5 37.5

Clustering

coefficient

4 5 50 62.5

Assortativity

coefficient

6 6 75 75

Efficiency 4 3 50 37.5

SW(3) 6 5 75 62.5

SB(1) 6 6 75 75

SB(2) 3 3 37.5 37.5

SB(3) 7 4 87.5 50

fSW ð3Þ,SBð2Þ,SBð3Þg 7 5 87.5 62.5

Table 6
Classification results using graph measures as features. The networks were

calculated using RIM on broadband MEG signals from 239 channels (248 channels

minus 9 channels with excessive noise). Compare with Table 2 where only the 46

channels shown in Fig. 2 were used.

Feature(s) True

positives

True

negatives

Sensitivity

(%)

Specificity

(%)

Average strength 7 6 87.5 75

Clustering

coefficient

6 3 75 37.5

Assortativity

coefficient

5 3 62.5 37.5

Efficiency 7 6 87.5 75

SW(3) 8 6 100 75

SB(1) 8 6 100 75

SB(2) 8 6 100 75

SB(3) 7 6 87.5 75

fSW ð3Þ,SBð2Þ,SBð3Þg 8 6 100 75
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estimated with RIM, MI, and PDC on the broadband MEG signal.
Analyses on spatially tailored graph measures assessed the spatial
layout of group differences in signal interdependencies. In general,
ANOVA results corroborated the classification findings by docu-
menting that the most reliable differences between groups (in all
cases indicating reduced connectivity for ASD participants) occurred
for connectivity estimates derived from RIM measures. For global
graph-based parameters, group differences (NI 4 ASD) that met the
Bonferroni-adjusted criterion of significance (a¼0.05/12¼0.004)
were restricted to the global efficiency and strength measures
derived from RIM indices. A non-significant trend in the same
direction was noted for the RIM-derived clustering index (p¼0.01).

For the spatially tailored average strength measures, group
by sector interactions was found for the RIM-based between-
sector measures: F(2,26)¼9.86, p¼0.001, and the RIM-based
within sector measures: F(2,26)¼9.75, p¼0.001. Follow up one-
way ANOVAs revealed that marginally significant group differ-
ences (NI 4 ASD) were restricted to the temporal sector,
bilaterally (p¼0.003) in both cases; Bonferroni-adjusted nominal
alpha levels were set to a¼0.05/24¼0.002 for each family of
comparisons. Non-significant trends in the same direction were
noted for MI measures, but failed to reach the Bonferroni-
adjusted alpha level for the omnibus ANOVA. There were no
significant effects involving group for any of the PDC estimates.

Band-specific analyses on the RIM-derived indices indicated
that group differences were restricted to the alpha band. Inter-
estingly, the traditional magnitude square coherence measure (MSC)
[32] only revealed non-significant trends (NI 4 ASD: po0:05) for
synchronization between bilateral temporal and the remaining
sensors in the alpha band.
4. Discussion

The ultimate goal of this exploratory study was to identify
features of hypothetical networks of resting neuromagnetic activ-
ity, modeled at the sensor-level, that reliably differentiate young
adults with ASD from typically developing individuals. An addi-
tional self-imposed restriction on the analytical strategy con-
cerned limiting computational resources in pursuing this goal.
Measures of neuromagnetic signal interdependence were
obtained at the sensor-level, in order to bypass the problems
posed by the indeterminacy of the inverse problem in estimating
source density distributions. Moreover, the results of source-level
network modeling of resting activity, as opposed to stimulus-
evoked activity reflecting the engagement of a particular brain
mechanism, may not be readily interpretable in the same context.
A secondary goal of the study was to spatially map network
features that differentiated the two groups, in the form of short
interconnecting paths within predefined sets of sensors, and also
in the form of longer paths ‘‘connecting’’ sensors in one such set
(sector) with sensors in other sets. In interpreting network
visualizations such as those depicted in Fig. 4, one should bear
in mind that these sensor-level representations, especially when
derived from axial gradiometer recordings, are but rough approx-
imations to the underlying network of regions that show syn-
chronized neuronal signaling at rest.

In our study we selected a set of 46 channels, as representative
of eight major helmet sectors (roughly corresponding to bilateral
frontal, occipital, left and right temporal, parietal, and ventral
occipitotemporal placements), to form a synchronization net-
work. This strategy had two consequences: (a) it reduced the
computation requirements for the synchronization measures
(time and memory) and (b) it filtered out most of the ‘‘short’’
edges which are common to autistic and control subjects and
appear as noise for the classification task. By removing a vertex,
we remove the connections of this vertex with its immediate
geographical neighbors. Note that we also lose some ‘‘long’’
connections. By systematically removing vertices we filter out
most of the ‘‘short’’ edges and make the remaining ‘‘long’’ edges
more discernible. Importantly, however, classification results
were very similar when using the entire sensor array (and only
excluding few sensors containing excessive noise).

Given the small sample of the present study, the relative
efficiency of each feature was assessed though a series of leave-
one-out classification analyzes. Initially, interdependence mea-
sures were calculated on the broadband (0.1–100 Hz) signal.
Results clearly showed that network features based on RIM
outperformed corresponding measures derived from sensor inter-
dependencies estimated using PDC in differentiating between the
two groups. PDC was initially considered as a measure because of
its purported sensitivity to direct causal interactions and of its
multivariate nature. The fact that PDC-derived networks were
dominated by ‘‘short’’ edges may have contributed to the poor
classification outcome. Whether this feature of PDC-derived net-
work models is characteristic to the technique in general or
reflects a peculiarity of applying this algorithm to axial gradi-
ometer MEG data is an issue that requires extensive simulation
modeling to address. RIM was also slightly superior to MI in
maximizing group-specific network features and has the added
advantage of requiring fewer computational resources.

The best classification results were obtained for a spatially
constrained graph parameter (average strength of edges) based
on RIM interdependence estimates, as compared to the estimates
of global graph characteristics (strength, clustering, assortativity,
and efficiency across the entire set of 46 sensors). Three of the
custom connectivity indices produced optimal, yet comparable to
each other, classification results: average interdependence within
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the set of right ‘‘temporal’’ sensors, average interdependence
between all the right ‘‘temporal’’ sensors and the remaining
sensors (in the ‘‘frontal’’, left ‘‘temporal’’, left and right ‘‘parietal’’,
left and right ‘‘ventral occipital’’, and midline ‘‘occipital’’ sectors),
and average interdependence between all the left ‘‘temporal’’
sensors and the remaining sensors. Further, by combining these
measures (using them concurrently as classification features) we
obtained the best classification rates reflecting 100% sensitivity
and 87% specificity (only one control participant was misclassi-
fied). Group-level analyses, using stringent criteria for statistical
significance, confirmed that the most reliable differences between
ASD participants and controls concerned the strength of interac-
tions between sensors located over temporal brain areas as well
as the strength of interactions between bilateral ‘‘temporal’’ and
the remaining preselected sensors (i.e., sensors over frontal,
parietal, occipital, and occipitotemporal regions).

These analyses were repeated on band-limited data (in the
delta, theta, alpha, beta, and gamma bands). Whereas classifica-
tion results were clearly poorer for corresponding network
features in each band, group-level parametric analyses indicated
that RIM and MI measures produced networks that significantly
differed between the two groups only in the alpha band. Inter-
estingly, traditional coherence measures did not significantly
differentiate the two groups (in group-level analyses). A prepon-
derance of non-linear signal synchronization between sensors
may have contributed to this outcome. This factor may have also
affected the sensitivity of PDC-derived network measures.

The present results documenting a spatially specific pattern of
sensor-level interactions are consistent with the results of two
recent EEG studies on ASD. In the earlier study, Murias et al. [25]
reported reduced alpha coherence between posterior and anterior
regions on the basis of resting EEG data for a group of adult ASD
participants compared to age-matched controls. More recently,
Coben et al. [26] found reduced coherence between frontal and
temporal regions for the group of ASD individuals as compared to
the control group. Taken together, these findings utilizing resting-
state recordings suggest that aberrant features of brain organiza-
tion may be time-invariant, trait-specific markers in ASD.

Although not directly comparable, our findings are also consis-
tent with an increasing number of neuroimaging studies linking ASD
with disturbances in white matter integrity [11–13], especially
increased fractional anisotropy values in the temporal lobes. Neu-
romagnetic studies during tasks requiring sensory processing also
point to a functional deficit in the temporal lobes in ASD. Wilson
et al. [68] reported that the 40 Hz steady-state auditory gamma
power is reduced over the left hemisphere in individuals with ASD,
suggesting a lack of coherent neuronal interactions. However, other
studies have demonstrated that the cortical auditory processing
abnormalities in ASD may be related to dysfunction of auditory
processes in the right hemisphere. For example, children with ASD
show reduced dynamic response range to frequency modulated
stimuli in the right hemisphere [69] and the latency of the early
component of the auditory magnetic evoked response (M100) in the
right hemisphere deviates sufficiently from the normal range to
function as a marker of ASD with a positive predictive value of 86%
[70]. Moreover, two studies suggest that children with ASD do not
exhibit the expected reduction in latency of the M100 that comes
with age with one study implicating both the left and right hemi-
spheres [69] and another study finding this phenomenon only in the
right hemisphere [70].

A number of factors preclude direct comparisons of our results
with previous fMRI findings. First, signal interdependencies were
assessed at the sensor and not at the source level, a necessary
condition in order to make statements regarding patterns of
cortico-cortical functional connections. Second, interdependency
metrics took into account rapid fluctuations in cortical activity, as
opposed to more steady-state variations in blood-flow/regional
oxygenation patterns. Third, our approach in defining networks
does not coincide with the approach of other authors. For
example, Kennedy and Courchesne [22] computed the connectiv-
ity between each of three regions (rostral mesial frontal, left
angular, posterior cingulate) and the remaining brain. So they
computed only a small subset of the network edges. Also, their
indices of connectivity include both within and between-
hemisphere voxel correlations. On the other hand we used a
hypothesis-free approach where we looked at interdependencies
between eight broad surface regions and we found reduced values
between frontal and parieto-temporal sensors both within and
between hemispheres. So although our results are not directly
comparable to theirs, they are not inconsistent either. Therefore
our findings should be considered as an initial attempt to
establish computational methods aimed at deriving relatively
stable surface-level patterns of activity that may prove to be
characteristic of resting-state brain function in ASD. It is certainly
encouraging that our results with respect to the regional pattern
of reduced connectivity are generally consistent with previous
resting-state fMRI findings although the exact structure of a
synchronization network between MEG sensors depends on the
distribution of the magnetic flux on the sensors and is certainly
different from the structure of the corresponding synchronization
network computed from fMRI data.

The present results are generally consistent with findings from
two recent MEG studies employing more elaborate indices of
signal interdependency than traditional coherence measures.
Georgopoulos et al. [29] computed functional connectivity net-
works based on the entire array of 248 MEG sensors. The degree
of synchronization within pairs of channels was computed using
cross-correlation, from the residuals of an autoregressive inte-
grative moving average (ARIMA) model. Then, they applied
genetic algorithms to identify successful predictor subsets from
the very large space of edges within the resulting synchronization
network (248�247/2¼30,628). Weighted linear sums of Fisher’s
z-transform of the values of this subset of edges served as
classification features, obtaining excellent classification results.
Note that Georgopoulos et al. [29] also used valued graphs in their
analysis. Pollonini et al. [71] also computed functional connectiv-
ity networks using all 248 channels of the MEG sensor array. They
modeled each MEG signal with a vector autoregressive model and
estimated Granger causality from the coefficients of the model.
Then, for each subject, a binary network was constructed which
included only the strongest links exceeding a prespecified thresh-
old. Finally, the network structure that was common to both
groups (ASD and controls) was subtracted to enhance group
differences. The authors reported 87.5% classification accuracy
using as features a set of 17 binary graph measures plus the
values of a small subset (5–70) of the directed edges of a
connectivity matrix. In their analysis they used both valued
graphs and binary graphs. It should be noted that Granger
causality is very similar to PDC, which corresponds to Granger
causality computed in the frequency domain and derived from
the coefficients of a vector autoregressive model of the MEG
signal. For this reason one may expect Granger causality to show
reduced sensitivity in differentiating between ASD participants
and controls making necessary the inclusion of a relatively large
set of (21) features to achieve 87.5% classification accuracy.
Although sample sizes are small to permit reliable comparison
between methods on classification accuracy, the existing data
suggest that the method used by Georgopoulos et al. [29] may
lead to higher classification performance. This may be attributed:
(a) to the signal processing method used to construct functional
connectivity networks, (b) to the larger set of sensors included in
the analyses and (c) to the use of single edges as classification



V. Tsiaras et al. / Computers in Biology and Medicine 41 (2011) 1166–11771176
features. A data set comprising 248 MEG channels produces
networks with 30,628 edges, therefore increasing the likelihood
of overfitting (because by mere chance some edges will be
stronger in participants of one group than in those of the other
group). Note that by considering the edges that perfectly separate
the two groups as classification features we achieved 100%
accuracy (see Section 2.2.5). Considering graph measures that
average across many edges (such as the between- and within-
sector graph measures) may reduce the risk of overfitting the
data, producing more robust features than single edges. Such
measures are more likely to represent inherent electrophysiolo-
gical characteristics of ASD. Moreover they can easily be applied
to virtually all existing synchronization measures that have been
proposed in the literature.

Future studies should extend analyses to larger data sets,
experiment with novel synchronization measures, consider more
than two groups of patients concurrently, and use all channels in
the synchronization networks in order to exploit all available
information in the recorded data sets.
5. Summary

The present study is a preliminary attempt to use graph theory
for deriving distinct features of resting-state functional networks in
young adults with autism spectrum disorder (ASD). Networks
modeled neuromagnetic signal interactions between sensors using
three alternative interdependence measures: (a) a non-linear mea-
sure of generalized synchronization (robust interdependence mea-
sure (RIM)), (b) mutual information (MI), and (c) partial directed
coherence (PDC). To summarize the information contained in each
network model we employed well-established global graph mea-
sures (average strength, assortativity, clustering, and efficiency) as
well as graph measures (average strength of edges) tailored to
specific hypotheses concerning the spatial distribution of abnorm-
alities in connectivity among individuals with ASD. Graph measures
then served as features in leave-one-out classification analyses
contrasting control and ASD participants. The best classification
results were obtained for spatially constrained graph measures as
compared to the estimates of global graph measures. With respect
to the synchronization measure, used to construct the networks,
RIM has higher sensitivity than MI and PDC in differentiating
between autistic and control subjects. The above analyses refer to
broadband MEG signal. For the band-specific data we additionally
calculated synchronization indices using the traditional coherence
for comparison. However, the band-limited data (in the delta, theta,
alpha, beta, and gamma bands) did not lead to better classification
results. There were significant trends for synchronization between
bilateral temporal and the remaining sensors in the alpha band for
networks calculated with RIM and MI. Interestingly, the traditional
magnitude square coherence measure (MSC) only revealed non-
significant trends for synchronization between bilateral temporal
and the remaining sensors in the alpha band. In summary we found
that combinations of regionally constrained graph measures, derived
from RIM in the broadband signal, performed best, discriminating
between the two groups with 93.75% accuracy. Network visualiza-
tion revealed that ASD participants displayed significantly reduced
interdependence strength, both within bilateral frontal and tem-
poral sensors, as well as between temporal sensors and the
remaining recording sites, in agreement with previous studies of
functional connectivity in this disorder.
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