COURSE SYLLABUS

YEAR COURSE OFFERED: 2018

SEMESTER COURSE OFFERED: Spring

DEPARTMENT: Electrical and Computer Engineering

COURSE NUMBER: ECE5397/ECE6397

NAME OF COURSE: Introduction to Machine Learning and Computer Vision

NAME OF INSTRUCTOR: Hien Van Nguyen

The information contained in this class syllabus is subject to change without notice. Students are expected to be aware of any additional course policies presented by the instructor during the course.

Learning Objectives

Understand the basic of machine learning concepts such as classification and regression Apply one machine learning technique to one real dataset

Major Assignments/Exams

Assignment 1 – Linear Regression (5%)

Assignment 2 – Multivariate Linear Regression (5%)

Assignment 3 – Logistic Regression (5%)

Assignment 4 – Neural Network (5%)

Assignment 5 – System Design (5%)

Assignment 6 – Support Vector Machine (5%)

Assignment 7 – Random Forest (5%)

Assignment 1 – Dimensionality Reduction (5%)

Final Exam (50%)

Required Reading

None

Recommended Reading

Machine Learning Lectures of Andrew Ng on Coursera

COURSE SYLLABUS

The Elements of Statistical Learning, Data Mining, Inference, and Prediction by Jerome H. Friedman, Robert Tibshirani, and Trevor Hastie Machine learning: A Probabilistic Perspective by Kevin P. Murphy

List of discussion/lecture topics

Lecture	Topic	Note
1	Welcome	
2	Linear Regression	
3	Linear Algebra Review	Assignment 1
4	Multivariate Linear Regression I	
5	Multivariate Linear Regression II	Assignment 2
6	Python Tutorial	
7	Logistic Regression I	
8	Logistic Regression II	
9	Regularization	Assignment 3
10	Neural Networks: Representation	
11	Neural Networks: Learning	Assignment 4
12	Good Practice in Machine Learning	
13	Machine Learning System Design	Assignment 5
14	Support Vector Machine	
15	Kernel Support Vector Machine I	
16	Kernel Support Vector Machine II	Assignment 6
17	Decision Tree	
18	Random Forest	Assignment 7
19	Unsupervised Learning	
20	Dimensionality Reduction	
21	Non-Linear Dimensionality Reduction	Assignment 8
22	Anomaly Detection I	
23	Anomaly Detection II	
24	Photo OCR I	
25	Photo OCR II	
26	Final Exam	