Choosing a Concentration & Electives

Electrical & Computer Engineering
BSEE and BSCpE Base

1st Semester (Fall)
- HIST 1377 US to 1877
- ENGI 1100 Intro to Engr
- ENGL 1303 First Year Writing I
- ECE 1111 Intro. To ECE
- MATH 1431 Calculus I
- CHEM 1331 Chemistry
- CHEM 1111 Chemistry Lab

2nd Semester (Spring)
- HIST 1378 US since 1877
- ENGL 1304 First Year Writing II
- ECE 1331 Comp. & Prob. Solv.
- MATH 1432 Calculus II
- PHYS 1321/1121 Univ Phys I

3rd Semester (Fall)
- POLS 1336 US & TX Constitutions
- ECE 2100 Circuits Lab
- MATH 2433 Calculus III
- PHYS 1322/1122 Univ Phys II
- MATH 3321 Engineering Math

4th Semester (Spring)
- XXXX X3XX Lang, Phil, & Culture Core
- ENGI 2304 Technical Comm
- ECE 3331 Prog Applic In ECE
- ECE 3337 Signal & System Analysis
- ECE 3436 Microprocessors
- ECE 3436 Microprocessors
Degree Plan for Electrical Engineering (BSEE)

LAST NAME: ___________________ FIRST NAME: ___________________ STUDENT ID # __________

Approved by Advisor: ___________________ (sign) ___________________ (print) Date: __________

STEP ONE: Choose Concentration Area
Students must take all courses in Category 1.

STEP TWO: Select courses
Students must take 7 concentration electives, 2 ECE electives, and 1 technical elective. Course selections must include a minimum of 4 labs. Students with 7 or more labs can substitute 3 labs for one ECE elective. If this is your plan, list the 3 extra labs in one of the ECE elective boxes.

STEP THREE: Get approved by concentration advisor
Students must have this form signed by their concentration advisor before submission. Submit to the ECE front office located in N308, Engineering Bldg. 1.

<table>
<thead>
<tr>
<th>Category 1: Concentration Areas & Required Concentration Electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students must take ALL of the courses listed in this category in their chosen Concentration Area.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4371/4117 Intro to Telecommunications Engineering</td>
<td>3458: Analog Electronics</td>
<td>5319/5119: Intro to Nanotechnology</td>
<td>5317/5113 Microwave Engineering</td>
<td>3394: Circuits & Systems</td>
<td>4437 Embedded Microcomputer Sys OR 5440 Adv Digital Design</td>
</tr>
<tr>
<td>3441: Digital Logic Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computers & Embedded Systems</th>
<th>3441: Digital Logic Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>4437 Embedded Microcomputer System OR 5440 Adv Digital Design</td>
<td>5367: Intro to Computer Architecture & Design</td>
</tr>
<tr>
<td>COSC 1320: Intro to Computer Science II</td>
<td></td>
</tr>
</tbody>
</table>
CATEGORY 2: CONCENTRATION ELECTIVES

Students are free to choose from the following courses to complete 7 Concentration Electives in total.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Select 4</td>
<td>Select 2</td>
<td>Select 3</td>
<td>Select 4</td>
<td>Select 3</td>
<td>Select 3</td>
</tr>
<tr>
<td>□ 5318/5114 Antenna Engineering</td>
<td>□ 5340 Intro to Well-Logging Techniques</td>
<td>□ 5317/5113 Microwave Engineering</td>
<td>□ 4363/4113: Electromechanical Energy Conversion</td>
<td>□ 5397: Smart Grid Technology</td>
<td>□ 4437: Embedded Microcomputer Systems</td>
</tr>
<tr>
<td>□ 5440 Advanced Digital Design</td>
<td>□ 5356: CMOS Analog Integrated Circuits</td>
<td>□ 5346: VLSI Design</td>
<td>□ 5340 Intro to Well-Logging Techniques</td>
<td>□ 5341: Data Integrity</td>
<td>□ 5451: Internetworking</td>
</tr>
<tr>
<td>□ 5397: Smart Grid Technology</td>
<td>□ 5386: Power Electronics & Electric Drives</td>
<td>□ 5346: VLSI Design</td>
<td>□ 5346: VLSI Design</td>
<td>□ 5397: Introduction to Robotics</td>
<td>□ COSC 2328: Data Structures</td>
</tr>
<tr>
<td>□ 5397: Introduction to Robotics</td>
<td>□ 5358 Modern Optics & Photonics</td>
<td>□ 5346: VLSI Design</td>
<td>□ 5346: VLSI Design</td>
<td>□ 5397: Introduction to Robotics</td>
<td>□ COSC 2328: Data Structures</td>
</tr>
</tbody>
</table>

ECE ELECTIVES

Students must take two additional ECE 3000-, 4000-, or 5000-level courses.

<table>
<thead>
<tr>
<th>ECE ELECTIVE</th>
<th>ECE ELECTIVE</th>
</tr>
</thead>
</table>

TECHNICAL ELECTIVE

Students must take one of the following courses.

<table>
<thead>
<tr>
<th>ECE</th>
<th>ENGI 3334 Intro to Thermodynamics</th>
<th>MATH 3364 Complex Analysis</th>
<th>MATH 4364 Numerical Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any ECE 3000-, 4000-, or 5000-level course</td>
<td>PHYS 3312 Modern Optics</td>
<td>PHYS 3315 Modern Physics</td>
<td>MECE 3400 Intro to Mechanics</td>
</tr>
</tbody>
</table>

ELECTIVE LABS

Your elective choices must include at least four labs. Please list these here.

<table>
<thead>
<tr>
<th>ECE LAB</th>
<th>ECE LAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE LAB</td>
<td>ECE LAB</td>
</tr>
</tbody>
</table>
BSEE Electives – 7 Concentration, 2 ECE, 1 Technical

- **CONCENTRATION ELECTIVES.** Students take **seven (7)** electives in their chosen Concentration in Categories 1 and 2.

- **ECE ELECTIVES.** Students must take **two (2)** additional ECE 3000-, 4000-, or 5000-level courses.

- **TECHNICAL ELECTIVE.** Students must take **one (1)** course from a list of approved non-ECE courses, OR an additional ECE Elective.

- **ELECTIVE LABS.** Students must take a minimum of **four (4)** 1-hour lab courses associated with their Concentration Electives, ECE Electives, and/or Technical Elective.
EE Concentration Areas and Advisors

- Signals, Communications, and Controls Dr. Bhavin Sheth
 - Signals
 - Communications
 - Controls

- Electronics Dr. Len Trombetta
 - Electronics
 - Integrated Circuits

- Nanosystems Dr. Stanko Brankovic

- Applied Electromagnetics Dr. David Jackson
 - Electromagnetics & Optics

- Power and Renewable Energy Dr. Jung-Uk Lim
 - Power
 - Renewable Energy

- Computers and Embedded Systems Dr. Yuhua Chen
CpE Program

- Dr. Yuhua Chen
Signals, Communications and Controls
Signals

Recording electroencephalogram (EEG) signal on the scalp.

Digital video camera

Five EEG channels, plus respiration, blood pressure, and ECG.
ECE 3366: Introduction to Digital Signal Processing
Prereq: ECE 3337. Discrete-time signals and systems, discrete Fourier methods, sampling, z-transform, modulation, synthesis of discrete-time filters using digital signal processors. Examples will be taken from bioelectrical signals.

ECE 5354: Digital Video
Signals

ECE 3337 EE Analysis

ECE 3331 EE Analysis

ECE 3366 Digital Signal Processing

ECE 5354 Digital Video

http://www.ee.uh.edu/undergraduate/future-course-offerings
Signals

- Signals electives go well with controls electives. Take electives from both. These two areas have many overlapping concepts and design/analysis skills.

- Signals electives allow the student to target employers that acquire and analyze seismic data (Schlumberger, Halliburton, CGC Veritas), develop medical monitoring equipment (Cyberonics, Medtronics), or design signal/video hardware components (TI).
Communications

Communications satellite.

Digital networking.

Fiber optic communications.
Communications

- **ECE 4371: Introduction to Telecommunications Engineering**
 Prereq: [ECE 3337](#) and [INDE 2333](#). Linear systems, filters, convolution, spectra, random processes, noise, baseband transmission, amplitude modulation and angle modulation, baseband digital communication and digital modulation.

- **ECE 5451: Principles of Internetworking**
 Prereq: credit for [ECE 3331](#) and [3441](#) and [CFORI 4371](#). Local area networks, IP addressing, routing protocols, TCP flow, congestion and error control, Domain Name System (DNS), Dynamic Host Configuration Protocol (DHCP), and Network Address Translation (NAT). Selected applications.
Communications

- ECE 3337 EE Analysis
- INDE 2333 Engineering Statistics
- ECE 3331 Programming Applications in ECE
- ECE 3441 Digital Logic Design

- ECE 4371 Intro to Telecommunications Engineering
- ECE 5451 Principles of Internetworking
Communications

- Job opportunities are available in companies that provide wireless/wired services (AT&T, IBM, Comcast) and build network equipment (Cisco, Lucent, Qualcomm, Broadcom, Texas Instruments). Communications expertise is needed in more specialized companies such as Schlumberger (downhole communication). Most companies need BS or MS graduates who can debug networks and ensure network security—these include oil-field monitoring companies, banks, and universities.

- ECE 4371 emphasizes the Physical Layer issues including modulation, coding, and estimation/detection.

- ECE 5451 emphasizes the Internetworking Layer and Transport Layer protocols. This course has an intense laboratory experience which prepares students to be productive in most network environments.
Controls

High-speed flight control.

Chemical plant control system.

PID loop controller.
Controls

- **ECE 4375: Automatic Control Systems**
 Prereq: ECE 2300, 3337, and CFORI 4115. Automatic Control System: mathematical modeling, block diagram, transfer function, system response, stability, root-locus, Bode analysis, Nyquist analysis, Nichols analysis, compensator design.

- **ECE 5335: State-Space Control Systems**
 Prereq: ECE 4375. State-space modeling, matrix algebra, system response, coordinate transformation, stability, controllability, observability, realization, state-feedback design and observers, nonlinear systems, Lyapunov functions, and optimal control.
Controls

- ECE 3337 EE Analysis
- ECE 4375 Automatic Control Systems
- ECE 5335 State-Space Control Systems
Controls

- Applying complex-variable functions and linear algebra to carry out analysis of control systems (such as flying vehicles, power grids, chemical processes, robotics) represented by transfer functions and state-space equations.

- Employing graphical techniques (such as Root-locus plot, Bode plots, Nyquist plots) to design analog controllers (such as PID controller) to improve the performances of control systems.

- Utilizing computer control software (such as MATLAB) to develop computer-aided analysis and design techniques for improving the performances of complex control systems.
Electronics
Electronics

Instrumentation electronics.

Analog electronics.

Digital electronics.

\[
\begin{align*}
Ac & = 1 \\
Adiff & = \frac{R2+R1}{R2}
\end{align*}
\]
Electronics

- **ECE 3456: Analog Electronics**

- **ECE 3457: Digital Electronics**
 Prereq: ECE 3337 and 3355. Analysis of discrete and integrated digital electronic devices and components and their use in the design and implementation of digital circuits.

- **ECE 4458: Instrumentation Electronics**
 Prereq: ECE 3337 and 3355. BJT review; FETs; differential amplifiers; op amp non-ideal characteristics; measurements with low signal-to-noise ratio and high source impedance such as bioelectrical signals; electrical safety; electrodes, transducers.
Integrated Circuits

A VLSI integrated circuit.
Integrated Circuits

- **ECE 5346: VLSI Design**
 Prereq: **ECE 3456** or **3457**. Integrated circuit design using computer-aided design methods; MOS, GaAs and bipolar techniques; standard cells, digital subcircuit and memory layout and design.

- **ECE 5356: CMOS Analog Integrated Circuits**
 Prereq: **ECE 3456**. Analysis and design of CMOS analog integrated circuits at the transistor level, single-stage and multistage amplifiers, differential pairs, current source biasing circuits, current mirrors, and operational amplifier circuit design.
Integrated Circuits

ECE 3355 Electronics

- ECE 3457 Digital Electronics
- ECE 3456 Analog Electronics

or

- ECE 5346 VLSI Design
- ECE 5356 CMOS Analog Integrated Circuits
Integrated Circuits

- Integrated circuits (ICs) in the form of chips represent the evolution of Electronics in the current century. ICs are included in all modern devices including conventional electronics, home appliances, cars, aircraft, manufacturing equipment, and military gear.

- Most large companies have IC divisions which design and sometime manufacture chips. Smaller companies use standard cells to implement electronic functions. The two major IC companies today are Texas Instruments and Intel. Other IC companies team up for research and development into consortiums such as SEMATECH.

- Opportunities exist in companies which manufacture computers, aircraft, computer software and automobiles.
Nanosystems
Nanosystems

65nm NAND Flash memory

Terabyte hard-drives (<30 nm critical dimensions)

32nm technology

Organic light emitting diode displays (use nanostructured polymers)
Nanosystems

- **ECE 5319: Introduction to Nanotechnology**
 Prereq: [ECE 3355](#), concurrent enrollment in [5119](#). Field of nanotechnology. Fundamental concepts underlying various nanotechnologies.

- **ECE 5320: Introduction to Nanomaterials Engineering**
 Prereq: [ECE 5319](#), concurrent enrollment in [5120](#). Engineering of nanomaterials with emphasis on structural, optical, photonic, magnetic and electronic materials. Synthetic methods and analytical characterization with design for applications will be emphasized.

- **ECE 5321: Design and Fabrication of Nanoscale Devices**
 Prereq: [ECE 5320](#), concurrent enrollment in [5121](#). Design and fabrication at the nanoscale. Effects of nanoscale phenomena on device scaling: technological advantages and challenges. Design, fabrication, metrology and device integration at nanoscale.
ECE 3355 Electronics

ECE 5319 Introduction to Nanotechnology

ECE 5320 Introduction to Nanomaterials Engineering

ECE 5321 Design & Fabrication of Nanoscale Devices
Nanoengineering Education for UH Undergraduate Students
NanoEngineering Minor Option (NEMO) (Fall 2009)

NanoEngineering Minor Option

<table>
<thead>
<tr>
<th>Junior Yr., Fall</th>
<th>Junior Yr., Spring</th>
<th>Summer</th>
<th>Senior Yr., Fall</th>
<th>Senior Yr., Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Nanotechnology (4 credits)</td>
<td>Introduction to Nanomaterials Engineering (4 credits)</td>
<td>NEMO Research Experience (3 credits)</td>
<td>Design and Fabrication at Nanoscale (4 credits)</td>
<td>Design Project*</td>
</tr>
</tbody>
</table>

Professional Development

Objective

This program provides funding and resources for undergraduate students to acquire additional skills that will broadly prepare them for professional and scientific careers in the 21st century.

* Design project is not required to complete the Minor. While not a part of the program, special effort will be undertaken to enable nanoengineering-based design projects.
Nanosystems
Applied Electromagnetics
Applied Electromagnetics

A cell-phone base-station antenna.

A microwave integrated circuit.

A microstrip antenna array.

A microwave filter constructed from microstrip.
Applied Electromagnetics

Power buses in a substation.

A transformer in a substation.

Overhead high-voltage power lines

Large AC generators at Hoover Dam.
High-frequency EM

- **ECE 5317: Microwave Engineering**
 Prereq: ECE 3317. Transmission lines, waveguides, microstrip circuits, microwave circuit theory, scattering matrices, impedance transformers, passive microwave devices, resonators, microwave tubes, and solid state active devices.

- **ECE 5318: Antenna Engineering**
 Prereq: ECE 3317. Antenna concepts, linear wire antennas, linear arrays, aperture and horn antennas, printed-circuit radiators, frequency-independent antennas, and measurement techniques.
Applied Electromagnetics

Low-frequency EM

- **ECE 2317: Applied Electricity and Magnetism**
 Prereq: CHEM 1117, 1372, MATH 2433, PHYS 1322, and credit for or concurrent enrollment in MATH 3321. Fundamentals of electricity and magnetism, vector calculus, Maxwell's equations, Kirchhoff's laws, static electric and magnetic fields, resistance, capacitance, inductance, magnetic circuits and transformers.
Applied Electromagnetics

ECE 3317
Applied EM Waves

ECE 5317
Microwave Engineering

ECE 5318
Antenna Engineering

ECE 2317
Applied Electricity & Magnetism
Antennas are used extensively in wireless communications, aerospace, and defense (military) areas. Antenna engineers will usually work in one of these areas. ECE 5318 provides a good background for those wishing to go into this area, or for those who simply want to know more about antennas (which are often a part of many sensor and communication systems).

The microwave field focuses on the design of microwave circuits and devices. These include active devices such as oscillators, amplifiers, mixers, frequency converters, etc., as well as passive components such as filters and multiplexers. Microwave engineers work in a wide variety of companies, since much of the modern electronic equipment that we have operates at microwave frequencies. ECE 5317 provides a good introduction to this area.
Low frequency electromagnetics is used in a variety of areas such as power engineering and nanoengineering. Examples include:

- Calculating the fields from power lines
- Designing motors, transformers, etc.
- Analyzing and designing nanomagnetic devices

ECE 2317 provides an introduction to low-frequency electromagnetics, covering basic electrostatic and magnetostatic principles.

ECE 2317 also provides a good foundation for all other EM courses, though it is not required for them.
Optics

Lens.

Fiber optics.

Lasers.

Optical reflection and refraction.
Optics

- **ECE 5358: Modern Optics and Photonics**
 Prereq: [ECE 3317](#). Lightwave fundamentals: geometrical and wave optics, interference, diffraction, scattering, Fourier optics; photonic passive & active devices: waveguides, lasers detectors, modulators, photonic integrated circuits, displays; optical system design and engineering.
Power & Renewable Energy
Power

Power transmission and distribution.

Power electronics.

Motors and generators
Power

- **ECE 4363: Electromechanical Energy Conversion**
 Prereq: [ECE 3364](#) and CFORI 4113. Electromechanical energy conversion principles, transformers, rotating machines, and solid-state motor control.

- **ECE 5377: Power Transmission and Distribution**
 Prereq: [ECE 3364](#) and CFORI 5127. Power transmission and distribution network architecture and composition; load curves; symmetrical components; parameters and equivalent circuits in symmetrical components for overhead and underground lines, transformers, generators and loads; sub-stations; industrial networks; network steady-state analysis; faults; protection systems; switching equipment; voltage and power static control; surge voltages and protection. A term project will be required.

- **ECE 5380: Power Electronics and Electric Drives**
 Prereq: [ECE 3355](#). Power electronics; power semiconductor switches; converters and inverters; DC, induction and synchronous motor drives; industrial applications; harmonics and filtering.
Power

ECE 3364 Circuits & Systems

ECE 3355 Electronics

ECE 4363 Electromechanical Energy Conversion

ECE 5377 Power Transmission & Distribution

ECE 5380 Power Electronics & Electric Drives
In each of these power courses there is a project related to topics covered in the lectures, and at the end of the semester there is a field trip to see the actual industrial equipment and installations.

ECE 4363 is a basic course for an electrical engineer. The knowledge covered is required for power-related jobs with electric utilities, electric transportation, and other industries.

ECE 5377 covers knowledge needed mainly for electric utilities, industry, commercial and residential areas.

ECE 5380 topics are applied on each of the areas where advanced power electronics, power supplies and control are needed, with electric utilities and industry.
Renewable Energy

- **ECE 5388 (5397 in Fall 2014): Renewable Energy Technology**
 Prereq: ECE 3364. Introduction and comprehensive overview of renewable energy technology. Topics include distributed generation and renewable energy including wind power, solar power, fuel cells and hydropower.

- **ECE 53xx: Smart Grid Technology**
 Prereq: ECE 3364. Details to be determined.
Renewable Energy

- ECE 3364 Circuits & Systems
- ECE 5388 Renewable Energy Technology
- ECE 5xxx Smart Grid Technology
Computers & Embedded Systems
Computers & Embedded Systems

Laptop computer.

Well-logging tool.

Automobile with multiple embedded systems.

Robonaut.
Computers & Embedded Systems

- **ECE 4437 (to become 5437): Embedded Microcomputer Systems**
 Prereq: ECE 3355 and 4436. Hardware and software components of real-time embedded microcomputer systems. Programming and interfacing to real-time external devices.

- **ECE 5436: Advanced Microprocessor Systems**
 Prereq: ECE 4436. Microcomputer assembly language programming, I/O programming, I/O interface design, memory interfacing.

- **ECE 5440: Advanced Digital Design**
 Prereq: ECE 3441, 3355 and CFORI 4436. Design fundamentals and techniques using application specific integrated circuit development and synthesis tools and field programmable gate arrays. Design of control units, arithmetic and logic units, memory and I/O subsystems and cache.
Computers & Embedded Systems

ECE 3355 Electronics

ECE 4436 Microprocessor Systems

ECE 3441 Digital Logic Design

ECE 4437 Embedded Microcomputer Systems

ECE 5436 Advanced Microprocessor Systems

ECE 5440 Advanced Digital Design
Computers & Embedded Systems

- Job opportunities are available both in companies that build computers and in companies that build systems based on digital technology.

- Computer companies such as HP locally and others in Silicon Valley have hired UH graduates to work in the design of their desktop computers. ECE 5436 and 5440 are good background for that work.

- Embedded systems skills are needed in industries in energy exploration (well-logging tools), biomedical instrumentation, NASA-related design (Robonaut), telecommunications, and many others. ECE 4437 and 5440 are good preparation for work in those areas.